Analyzing the causes of sports injuries in college sports activities and research on the recovery strategy using an intelligent approach

Analyzing the causes of sports injuries in college sports activities and research on the recovery strategy using an intelligent approach

  • Zadeh, L. A. Fuzzy sets. Inf. Control 8(3), 338–353. (1965).

    Article 

    Google Scholar 

  • Intanssov, K. T. Intuitionistic fuzzy set. Fuzzy Sets Syst. 20, 87–96 (1986).

    Article 

    Google Scholar 

  • Yager, R. R. Pythagorean fuzzy subsets. In 2013 joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS) 57–61 (IEEE, 2013).

  • Yager, R. R. Generalized orthopair fuzzy sets. IEEE Trans. Fuzzy Syst. 25(5), 1222–1230 (2016).

    Article 

    Google Scholar 

  • Cuong, B. C. & Kreinovich, V. Picture fuzzy sets-a new concept for computational intelligence problems. In 2013 Third World Congress on Information and Communication Technologies (WICT 2013) 1–6 (IEEE, 2013).

  • Ullah, K. Picture fuzzy Maclaurin symmetric mean operators and their applications in solving multiattribute decision-making problems. Math. Probl. Eng. 2021, e1098631. (2021).

    Article 

    Google Scholar 

  • Liu, P., Munir, M., Mahmood, T. & Ullah, K. Some similarity measures for interval-valued picture fuzzy sets and their applications in decision making. Information 10(12), 12. (2019).

    Article 

    Google Scholar 

  • Mahmood, T., Ullah, K., Khan, Q. & Jan, N. An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets. Neural Comput. Appl. 31(11), 7041–7053 (2019).

    Article 

    Google Scholar 

  • Akram, M., Ullah, K. & Pamucar, D. Performance evaluation of solar energy cells using the interval-valued T-spherical fuzzy Bonferroni mean operators. Energies 15(1), 1. (2022).

    Article 

    Google Scholar 

  • Ullah, K., Mahmood, T. & Garg, H. Evaluation of the performance of search and rescue robots using T-spherical fuzzy hamacher aggregation operators. Int. J. Fuzzy Syst. 22(2), 570–582 (2020).

    Article 

    Google Scholar 

  • Chen, S.-M., Yeh, M.-S. & Hsiao, P.-Y. A comparison of similarity measures of fuzzy values. Fuzzy Sets Syst. 72(1), 79–89 (1995).

    Article 
    MathSciNet 

    Google Scholar 

  • Yang, M.-S., Hung, W.-L. & Chang-Chien, S.-J. On a similarity measure between LR-type fuzzy numbers and its application to database acquisition. Int. J. Intell. Syst. 20(10), 1001–1016 (2005).

    Article 

    Google Scholar 

  • Dengfeng, L. & Chuntian, C. New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions. Pattern Recogn. Lett. 23(1–3), 221–225 (2002).

    Article 
    ADS 

    Google Scholar 

  • Li, Y., Olson, D. L. & Qin, Z. Similarity measures between intuitionistic fuzzy (vague) sets: A comparative analysis. Pattern Recogn. Lett. 28(2), 278–285 (2007).

    Article 
    ADS 

    Google Scholar 

  • Hwang, C.-M., Yang, M.-S. & Hung, W.-L. New similarity measures of intuitionistic fuzzy sets based on the Jaccard index with its application to clustering. Int. J. Intell. Syst. 33(8), 1672–1688 (2018).

    Article 

    Google Scholar 

  • Hung, W.-L. & Yang, M.-S. Similarity measures of intuitionistic fuzzy sets based on Hausdorff distance. Pattern Recogn. Lett. 25(14), 1603–1611 (2004).

    Article 
    ADS 

    Google Scholar 

  • Chen, S.-M., Cheng, S.-H. & Lan, T.-C. A novel similarity measure between intuitionistic fuzzy sets based on the centroid points of transformed fuzzy numbers with applications to pattern recognition. Inf. Sci. 343, 15–40 (2016).

    Article 
    MathSciNet 

    Google Scholar 

  • Gohain, B., Chutia, R., Dutta, P. & Gogoi, S. Two new similarity measures for intuitionistic fuzzy sets and its various applications. Int. J. Intell. Syst. 37(9), 5557–5596. (2022).

    Article 

    Google Scholar 

  • Wei, G. & Wei, Y. Similarity measures of Pythagorean fuzzy sets based on the cosine function and their applications. Int. J. Intell. Syst. 33(3), 634–652. (2018).

    Article 

    Google Scholar 

  • Zeng, W., Li, D. & Yin, Q. Distance and similarity measures of Pythagorean fuzzy sets and their applications to multiple criteria group decision making. Int. J. Intell. Syst. 33(11), 2236–2254 (2018).

    Article 

    Google Scholar 

  • Peng, X. & Garg, H. Multi-parametric similarity measures on Pythagorean fuzzy sets with applications to pattern recognition. Appl. Intell. 49(12), 4058–4096 (2019).

    Article 

    Google Scholar 

  • Hussian, Z. & Yang, M.-S. Distance and similarity measures of Pythagorean fuzzy sets based on the Hausdorff metric with application to fuzzy TOPSIS. Int. J. Intell. Syst. 34(10), 2633–2654 (2019).

    Article 

    Google Scholar 

  • Wang, P., Wang, J., Wei, G. & Wei, C. Similarity measures of q-rung orthopair fuzzy sets based on cosine function and their applications. Mathematics 7(4), 340 (2019).

    Article 
    CAS 

    Google Scholar 

  • Liu, D., Chen, X. & Peng, D. Some cosine similarity measures and distance measures between q-rung orthopair fuzzy sets. Int. J. Intell. Syst. 34(7), 1572–1587. (2019).

    Article 

    Google Scholar 

  • Peng, X. & Liu, L. Information measures for q-rung orthopair fuzzy sets. Int. J. Intell. Syst. 34(8), 1795–1834 (2019).

    Article 
    MathSciNet 

    Google Scholar 

  • Farhadinia, B., Effati, S. & Chiclana, F. A family of similarity measures for q-rung orthopair fuzzy sets and their applications to multiple criteria decision making. Int. J. Intell. Syst. 36(4), 1535–1559 (2021).

    Article 

    Google Scholar 

  • Wei, G. Some similarity measures for picture fuzzy sets and their applications. Iran. J. Fuzzy Syst. 15(1), 77–89 (2018).

    MathSciNet 

    Google Scholar 

  • Mahmood, T., Ilyas, M., Ali, Z. & Gumaei, A. Spherical fuzzy sets-based cosine similarity and information measures for pattern recognition and medical diagnosis. IEEE Access 9, 25835–25842 (2021).

    Article 

    Google Scholar 

  • Hussain, M., Hussain, A., Yin, S. & Abid, M. N. T-spherical fuzzy information and Shweizer-Sklar operations based Maclaurin symmetric mean operator and their applications. J. Innov. Res. Math. Comput. Sci. 2(2), 2. (2023).

    Article 

    Google Scholar 

  • Hussain, A., Ullah, K., Aydin, N. & Olanrewaju, O. A. A new approach towards analysis of life cycle of energy storage systems: An intuitionistic fuzzy rough based TODIM approach. Energy Rep. 13, 59–67 (2025).

    Article 

    Google Scholar 

  • Garg, H., Hussain, A., Ullah, K. & Ashraf, A. Assessment of learning management systems based on Schweizer-Sklar picture fuzzy Maclaurin symmetric mean aggregation operators. Comp. Appl. Math. 43(7), 404. (2024).

    Article 
    MathSciNet 

    Google Scholar 

  • Luo, M. & Zhang, Y. A new similarity measure between picture fuzzy sets and its application. Eng. Appl. Artif. Intell. 96, 103956 (2020).

    Article 

    Google Scholar 

  • Thao, N. X. Similarity measures of picture fuzzy sets based on entropy and their application in MCDM. Pattern Anal. Appl. 23(3), 1203–1213 (2020).

    Article 
    MathSciNet 

    Google Scholar 

  • Rafiq, M., Ashraf, S., Abdullah, S., Mahmood, T. & Muhammad, S. The cosine similarity measures of spherical fuzzy sets and their applications in decision making. J. Intell. Fuzzy Syst. 36(6), 6059–6073 (2019).

    Article 

    Google Scholar 

  • Hussain, A. & Pamucar, D. Multi-attribute group decision-making based on pythagorean fuzzy rough set and novel Schweizer-Sklar T-norm and T-conorm. J. Innov. Res. Math. Comput. Sci. 1(2), 1–17 (2022).

    Google Scholar 

  • Liaqat, M., Yin, S., Akram, M. & Ijaz, S. Aczel-alsina aggregation operators based on interval-valued complex single-valued neutrosophic information and their application in decision-making problems. J. Innov. Res. Math. Comput. Sci. 1(2), 40–66 (2022).

    Google Scholar 

  • Abid, M. N., Yang, M.-S., Karamti, H., Ullah, K. & Pamucar, D. Similarity measures based on T-spherical fuzzy information with applications to pattern recognition and decision making. Symmetry 14(2), 410 (2022).

    Article 
    ADS 

    Google Scholar 

  • Shen, X., Sakhi, S., Ullah, K., Abid, M. N. & Jin, Y. information measures based on T-spherical fuzzy sets and their applications in decision making and pattern recognition. Axioms 11(7), 302 (2022).

    Article 

    Google Scholar 

  • Garg, H., Ullah, K., Ali, K., Akram, M. & Abid, M. N. Multi-attribute decision-making based on sine trigonometric aggregation operators for T-spherical fuzzy information. Soft Comput. 1–15 (2023).

  • Akram, M. & Naz, S. A novel decision-making approach under complex Pythagorean fuzzy environment. Math. Comput. Appl. 24(3), 73 (2019).

    MathSciNet 

    Google Scholar 

  • Bardamova, M. et al. Population generation methods for metaheuristic algorithms used to construct compact fuzzy classifiers of medical data. Pattern Recognit. Image Anal. 34(3), 396–411. (2024).

    Article 

    Google Scholar 

  • Tair, M., Bacanin, N., Zivkovic, M. & Venkatachalam, K. A chaotic oppositional whale optimisation algorithm with firefly search for medical diagnostics. Comput. Mater. Continua 72(1) (2022) Accessed 07 Mar 2025. https://www.academia.edu/download/84539667/TSP_CMC_46919.pdf

  • Bilal, A. et al. Advanced CKD detection through optimized metaheuristic modeling in healthcare informatics. Sci. Rep. 14(1), 12601 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zivkovic, M. et al. COVID-19 cases prediction by using hybrid machine learning and beetle antennae search approach. Sustain. Cities Soc. 66, 102669 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Liu, P., Munir, M., Mahmood, T. & Ullah, K. Some similarity measures for interval-valued picture fuzzy sets and their applications in decision making. Information 10(12), 369 (2019).

    Article 

    Google Scholar 

  • Ashraf, S., Ahmed, M., Naeem, M. & Duodu, Q. Novel complex intuitionistic hesitant fuzzy distance measures for solving decision-support problems. Discrete Dyn. Nat. Soc. 2024, 1–27. (2024).

    Article 

    Google Scholar 

  • Wang, Z. et al. Towards cognitive intelligence-enabled product design: The evolution, state-of-the-art, and future of AI-enabled product design. J. Ind. Inf. Integr. 100759 (2024).

  • Chu, S., Lin, M., Li, D., Lin, R. & Xiao, S. Adaptive reward shaping based reinforcement learning for docking control of autonomous underwater vehicles. Ocean Eng. 318, 120139 (2025).

    Article 

    Google Scholar 

  • Chen, Z., Li, B. & Wang, B. Robust stability design for inverters using phase lag in proportional-resonant controllers. IEEE Trans. Ind. Electron. (2024); accessed 12 Mar 2025. https://ieeexplore.ieee.org/abstract/document/10638814/

  • Deng, J., Liu, G., Wang, L., Liu, G. & Wu, X. Intelligent optimization design of squeeze casting process parameters based on neural network and improved sparrow search algorithm. J. Ind. Inf. Integr. 39, 100600 (2024).

    Google Scholar 

  • Deng, J., Liu, G., Wang, L., Liang, J. & Dai, B. An efficient extraction method of journal-article table data for data-driven applications. Inf. Process. Manag. 62(3), 104006 (2025).

    Article 

    Google Scholar 

  • Gao, D. et al. A comprehensive adaptive interpretable Takagi-Sugeuo-Kang fuzzy classifier for fatigue driving detection. IEEE Trans. Fuzzy Syst. (2024); accessed 12, Mar. 2025. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10528899/

  • Shi, X., Zhang, Y., Yu, M. & Zhang, L. Revolutionizing market surveillance: Customer relationship management with machine learning. PeerJ Comput. Sci. 10, e2583 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng, S. et al. Asymmetric adaptive heterogeneous network for multi-modality medical image segmentation. IEEE Trans. Med. Imaging (2025), accessed 12 Mar (2025).

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *